

Basics of refrigeration

BAC Product, system and application training

© Baltimore Aircoil Company

This presentation is for BAC Academy participants only. It can not be shared outside of the

BAC Academy community.

Training owner: Marketing Department BAC entity : BAC Headquarters Europe

MANAGEMENT

Target group:Image: state state

SUPPORT

BALTIMORE AIRCOIL COMPANY CONFIDENTIAL AND PROPRIETARY

SALES

Purpose

Remove heat from a space or product and to reject that heat to the environment

Psychrometric diagram

Psychrometric diagram

Psychrometric

Evaporator

CONFIDENTIAL AND PROPRIETARY

Compressor

CONFIDENTIAL AND PROPRIETARY

Condenser

cadem

Refrigeration Cycle

condenser capacity = evaporator capacity + compressor energy BALTIMORE AIRCOIL COMPANY CONFIDENTIAL AND PROPRIETARY

Exercise (solutions)

Consider mass flow = 1kg/s

- ♦ T(e) = -10°C
- ♦ T(c) = 35°C
- Q(e) = 1086,7kJ/kg \rightarrow 1086,7kW
- Q(c) = 1309,7kJ/kg \rightarrow 1309,7kW
- W = $223kJ/kg \rightarrow 223kW$
- Condenser selection (wb=21°C): VXC S328
- Fan motor: 30kW

Pump motor: 2,2kW

Which operating strategy results in the lowest operational cost?

A. Keep condensing temperature constant and vary the fan speed

B. Maximize fan speed and lower the condensing temperature

Condenser operation strategy $COP = \frac{condenser\ capacity\ (kW)}{compressor\ energy\ (kW)}$ Low condensing pressure/temperature Low compressor energy **HIGH COP** Maximize fan speed!

